1,881 to 1,890 of 1,924 Results
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: 833541232ca117cf30cbb11e831b956cb6ed1be6387f8a8806c53ea3849b4fd0
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: e88989f353811cc44f56afb25c605a146219f569297f6c6ef6530a90a92a2d03
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: 90d09604a7cbb383749a744b0361f0b2dab6cb39fe118c953aa980fa2eb87347
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: 12451f869428ad6285f2a069aefaf9e12405ac854eb24edf4e6f8d868659582f
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: 93c31f95bc2d5a322dae4831fad96672a2376c0001aaefdfedb88b4d797c4fa0
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: 2b2d340f9ff84cfba7e87036fcc99fa341a65a863b858fcb6ff1194184f1c061
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: a392467cc8f82253580f323a285a5559d18a960a7b6dd8c3588c22ab35135c83
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: e9860c13cb2dcf351615350768100decbfb49789f52e545478aefec24abecaa0
|
Aug 29, 2022 -
Data set of the manuscript 'Opposite signs in local and nonlocal soil moisture-precipitation couplings across Europe'
Plain Text - 911.4 MB - SHA-256: a49c80f9eceaf984da0e1ee01b8fd8b3cc27999380831c8609e504256c6b5794
|
Mar 28, 2022
Ma, Yueling; Montzka, Carsten; Naz, Bibi; Kollet, Stefan, 2021, "Advancing AI-based pan-European groundwater monitoring", https://doi.org/10.26165/JUELICH-DATA/ZBLDIR, Jülich DATA, V2
This study proposes an AI-based methodology combining Long Short-Term Memory (LSTM) networks and transfer learning (TL) to estimate water table depth anomalies (wtd_a) at the European scale in the absence of consistent water table depth (wtd) observational data sets, which is nam... |