Skip to main content
AI Crawler DoS Attacks | Dataverse Creation Restriction – Please note:
  • We are experiencing a coordinated attack by AI training crawler bots, which slow down the service. We are working on mitigating the problem and apologize for any inconveniences.
  • Institutional or project level dataverses have to be created with confirming permissions. See details in guide.
Jülich DATA (Forschungszentrum Jülich GmbH)
Metrics
163,408 Downloads

Jülich DATA is the central institutional repository for research data of Forschungszentrum Jülich.

It serves as a platform for all research data generated at Forschungszentrum Jülich or created in this context. Please feel welcome to index your research data here.

This service is managed by the Central Library. Please see our guide about how to use this service or feel free to reach out via email to forschungsdaten@fz-juelich.de.

We are registred within re3data.org:

Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Find Advanced Search

18,331 to 18,340 of 20,114 Results
Plain Text - 2.8 KB - SHA-256: e816d6722d7379eb9c838cd6a511283a9d1beb07d577d9b3b56e42385be213d5
Mar 29, 2022 - Central Library
Pollack, Philipp; Barbers, Irene; Lindstrot, Barbara; Stanzel, Franziska, 2021, "Open Access Monitor: OA-Zeitschriftenliste DFG-Anträge", https://doi.org/10.26165/JUELICH-DATA/HS8RFY, Jülich DATA, V4
Die Liste setzt sich zusammen aus Zeitschriften aus dem "DOAJ" und aus der "Bielefelder Liste" ISSN-Gold-OA. Mirror Journals wurden entfernt. Die Liste dient in der Webanwendung des Open Access Monitors als Filter für Auswertungen zur Unterstützung von Antragstellungen zum DFG Fö...
Comma Separated Values - 2.8 MB - SHA-256: 51356edb147190e53e7cf406baeaad241589dc1573d2dc0e60cc8bf5c400d9b5
Updated list with input from ISSN-GOLD-OA 5.0
Mar 28, 2022 - Campus Collection
Ma, Yueling; Montzka, Carsten; Naz, Bibi; Kollet, Stefan, 2021, "Advancing AI-based pan-European groundwater monitoring", https://doi.org/10.26165/JUELICH-DATA/ZBLDIR, Jülich DATA, V2
This study proposes an AI-based methodology combining Long Short-Term Memory (LSTM) networks and transfer learning (TL) to estimate water table depth anomalies (wtd_a) at the European scale in the absence of consistent water table depth (wtd) observational data sets, which is nam...
Jupyter Notebook - 82.0 KB - SHA-256: 9fae22a6005caf9cb3361e20ba0bd5954550e833e3444ef24a917abe41a77b5b
A Jupyter Notebook showing an example about the implementation of LSTM-TL
Mar 23, 2022 - Institute of Bio- and Geosciences – Plant Sciences (IBG-2)
Acebron, Kelvin, 2022, "Dataset for the Arabidopsis npq study using active and passive fluorescence and reflectance", https://doi.org/10.26165/JUELICH-DATA/LCUQZC, Jülich DATA, V1
This dataset contains all the main and supplementary data collected from diurnal measurements of Arabidopsis npq mutants in the summer of 2017 and winter of 2018. The dataset is composed of reflectance measurements, passive fluorescence signal (SIF) and active fluorescence signal...
Comma Separated Values - 165.3 KB - SHA-256: 36e448158244da412a82acbf566721543545f0053ff58425cd45177d80f441f0
Comma Separated Values - 165.1 KB - SHA-256: 19eeb63469fe47b1febd5bbe6221b4f768d40fbbd3f6bed11fe57d2e2d903013
Comma Separated Values - 63.8 KB - SHA-256: aed65b3590ec26489cc6112e5131fb6e67cd8784ef9f533be6ffbab8e119580d
Comma Separated Values - 36.2 KB - SHA-256: 081b9a118deb28b68c660812d49c01f6efc6fe89f32e72a28c4149c1741bf143
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.

Contact Jülich DATA Support

Jülich DATA Support

Please fill this out to prove you are not a robot.

+ =