51 to 60 of 449 Results
Mar 27, 2025 - Institute of Climate and Energy Systems (ICE) – Jülich Systems Analysis (ICE-2)
Tsani, Tsamara; Pelser. Tristan; Onodera. Hiroaki; Weinand. Jann; Stolten. Detlef, 2025, "Open-sourced renewable energy potential analysis for Japan", https://doi.org/10.26165/JUELICH-DATA/ALICTI, Jülich DATA, V1
Zenodo. The repository stores code, land-use dataset, and reverse-viewshed maps to calculate capacity potential for Offshore Wind, Onshore Wind, and Open-field PV in Japan for the base scenario and under visibility restriction from important landscapes. The code use ETHOS.GLAES (... |
Mar 26, 2025 - Peter Grünberg Institute (PGI) – Electronic Materials (PGI-7)
Schön, Daniel; Menzel, Stephan, 2025, "JART TC", https://doi.org/10.26165/JUELICH-DATA/AHUQHC, Jülich DATA, V1
Upcoming computing and market-ready storage technologies must not only become more powerful, but also more energy-efficient to meet future challenges. A promising solution are BEOL-integrated RRAM arrays. However, with shrinking feature size, thermal management is becoming increa... |
Mar 26, 2025 - Institute of Climate and Energy Systems (ICE) – Jülich Systems Analysis (ICE-2)
Tsani, Tsamara; Pelser. Tristan; Weinand. Jann; Stolten. Detlef, 2025, "Reverse viewshed analysis for a priori landscape impacts assessment of renewable infrastructure", https://doi.org/10.26165/JUELICH-DATA/QRILM3, Jülich DATA, V1
Zenodo. The repository stores code to generate cumulative reverse viewshed maps that shows theoretically visible area for large-scale onshore wind and open-field PV placements from list of important viewpoints or landscapes. The generated cumulative reverse viewshed maps can be u... |
Mar 25, 2025 - Peter Grünberg Institute (PGI) – Electronic Materials (PGI-7)
Menzel, Stephan; Bengel, Christopher, 2025, "JART VCM v1b Readvar", https://doi.org/10.26165/JUELICH-DATA/VCRB1E, Jülich DATA, V1
The JART VCM v1b Readvar model represents a further extension of the JART VCM v1b var model which additionally considers read noise. The equivalent circuit diagram of the JART VCM v1b Readvar model can be seen in Fig. 1 (JART_VCM_v1b_Readvar.jpg) [1]. The read noise is implemente... |
Mar 25, 2025 - Peter Grünberg Institute (PGI) – Electronic Materials (PGI-7)
Menzel, Stephan; Bengel, Christopher, 2025, "JART VCM v1 generic", https://doi.org/10.26165/JUELICH-DATA/QELKG7, Jülich DATA, V1
The JART VCM v1 generic model is a special variant of the more general JART VCM v1 model. It provides in total 16 data sets to study the influence of the nonlinearity SL of the switching kinetics and the resistance ratio r on different circuit designs [1]. Four different slopes a... |
Mar 25, 2025 - Peter Grünberg Institute (PGI) – Electronic Materials (PGI-7)
Zurhelle, Alexander, 2025, "JART OxRelax", https://doi.org/10.26165/JUELICH-DATA/VC9OCI, Jülich DATA, V1
In the search for an oxide-based 2D electron system with a large concentration of highly mobile electrons, a promising strategy is to introduce electrons through donor doping while spatially separating electrons and donors to prevent scattering. In SrTiO3, this can be achieved by... |
Mar 25, 2025 - Peter Grünberg Institute (PGI) – Electronic Materials (PGI-7)
Menzel, Stephan; Bengel, Christopher, 2025, "JART VCM v1b var", https://doi.org/10.26165/JUELICH-DATA/FERGKU, Jülich DATA, V1
The JART VCM v1b var model represents an extension of the JART VCM v1b model which additionally considers device-to-device and cycle-to-cycle variability. The ECD can be seen in Fig. 1. The physical equations are the same as in the v1b model. Device-to-device variability is achie... |